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On two classes of Banach spaces with
uniform normal structure

by

J1 GAO (Philadelphia, Penn.) andi‘ KA-SING LAU (Pittsburgh, Penn.)

Abstract We glve two classes of Banach spaces X that have uniform normal structure. The
first class is closed under duality, and contains the uniformly convex spaces as well as the umformly
smooth spaces. The second class is defined by J(X) < 3/2, where J(X) = sup{llx+yll A lIx—yl:
x|l = ilyll = 1}. Both classes of spaces are uniformly nonsquare, their properties are being studied.

§ 1. Introduction. A Banach space X is said to have normal structure [2, 8]if

~ for each bounded closed convex subset K in X that contains more thah one
pomt there exists a point xeK such that

sup{llx—yll: yeK}<d1amK

X is said to have umform normal structure if there exists 0 < ¢ < 1 such that for
any subset K as above, there exists xe K such that

sup{flx—yl: ye_K} < cdiamK.

It is well known that uniform convexity in every direction implies normal
structure [8, 28], whereas uniform convexity and uniform smoothness imply
- uniform normal structure [8, 27]. Our main purpose in this paper is to give two
new classes of Banach spaces with unlform normal structure and study their
‘relevant properties. .

Let S(X) = {xeX: ||x]| = 1} be the unit sphere of X. For xeX, let ¥ V.
denote the set of norm 1 supporting functionals f of S(X) at x. In [16] Lau
introduced the following notion to study the Chebyshev subset of X:

DEerINITION 1.1. A Banach space X is called a U-space if for any ¢ > 0, there
exists 6 > 0 such that

'(1 ) VxyeS(X), |l(x+y)/2|| >1-6 = <f, y>>1—5 Vfel..

Some of the propertles of U-spaces in [16] are summarized in the followmg
theorem
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THEOREM 1.2. (i) If X is a U-space, then X is uniformly nonsquare, in
particular, X is superreflexive [8];

(i) X is a U-space if and only if X* is a U-space;

(iii) Uniformly convex spaces and uniformly smooth spaces are U-spaces.

One of the main results in this paper is

THEOREM 1.3. If X is a U-space, then X has uniform normal structure.

In an attempt to simplify Schéffer’s notion of girth and perrmeter [22], the
authors studied in [12] the parameter

J(X) = sup{lx -+l A x=y]: x yeSOO}

They showed that f JX)<2;, J(X)< 2 if and only if X is uniformly'

nonsquare; J(l,) = \/5 J(,)=J(,) =2, and more general, J ()=J (L )
= max {2'?, 214}, where 1/p+1/qg=1, p> 1. Our second main theorem is

THEOREM 1.4. Let X be a Banach space with J(X) < 3/2 Then X has unzform
normal structure.

Let 6(e) = inf{1—3x+y[: [x—yl > &, x,yeS(X)}, 0<ex< 2,‘_be‘ the mo-
dulus of convexity of X. The relation of J(X) and d(e) is: J(X) < ¢ if and only if
6(g) > 1—¢/2 (Corollary 5.5). As a consequence, we have .

~ COROLLARY 1.5. Let X be a Banach space with 6(3/2) > 1/4. Then X has
-uniform normal structure.

This result is closely related to a theorem of Goebel [13], namely: if :
d(1) > 0, then X has uniform normal structure. It is worthwhile to mention
that if a modulus of convexity ¢ satisfies the condition 6(3/2) > 1/4 and the
function ¢ is convex, then 6(1) > 0 (since §(1) = 0 implies 5(27) = lim,.,,- 8()
< 1/2). Therefore Corollary 1.5 is a new result for the spaces with nonconvex-
moduli of convexity. Prus [22] and we both 1ndependently found different |
examples of Banach spaces with 6(3/2) > 1/4 and §(1) = bt

In [12], it is shown that J(X) can be estimated through 1somorph1sm We .
improve that result when X is isomorphic to [, or L,: e

Tueorem 1.6. For any isomorphism T from X to l, or L,, 1‘v<'p‘.< bo,
JOO) < ITI 1T~ max {247, 243}, where 1/p-+1/g = 1. DRy

As a consequence we can conclude that certain isomorphs of l or L are’ o
uniformly nonsquare (Corollary 6.5). £
The paper is arranged as follows: In §2, we prove some preparatlon' »
lemmas. The main result is Lemma 2.3. It amounts to saying that if X does not .

have w-normal structure, then the unit ball contains a hexagon with a certain :

property. As a direct application, we give a.simple proof of a result of Turett
[27] concerning the modulus of smoothness and normal structure (Corollary
2.4).In §3, Lemma 2.3 is used to prove the normal structure of U-spaces. We .
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also obtain some equivalent forms of U-spaces. The ultraproduct of U-spaces is
taken up in §4, which leads to uniform normal structure for such spaces. In § 5,
we use Lemma 2.3 again to prove the uniform normal structure for J(X) < 3/2.
We also establish the connection of J(X) and d(g), the modulus of convexity of
X. In §6, some isomorphism results for J(X) are obtained. Finally in §7, we
_give some remarks in connection with the works of Bynum [5] and Pichugov
[21] on the normal structure coefficient, and also pose some open questions.

§2. Some lemmas. Let X be a Banach space. For r >0, xeX, let
" B(x, 1) = {y: llx—y| <r}, and let B(X) = B(0, 1) be the unit ball of X.

| LemMaA 2.1. For O0<e<l,let L=[xy; x,] be a line segment in B(X) such
that 3|x;+x,].> 1—e Then for any zeL, |z| > 1-2e.

Proof. Let z=1tx;+(1—1)x,, 0 < t < 1. For O <t< 1/2,

2= (- 2t)x1+ 2

—(1-20)x,,
and hence ||z|| > (2— 2t)(1—8) (1— 2t) >1-2¢ A s’imilar'pr‘o‘of h.(ilds"for
12<t< 1. '

| A Banach space X is said to have w-normal structure if for each weakly
compact convex set K in X that contains more than one point, there exists an
x€K such that sup{||x—y|: yeK} < diam K. It is clear that if X is reflexive,
then normal structure (as defined in § 1) and w-normal structure coincide. The
following is a special case of a result of van Dulst [11].. '

LEMMA 2.2. Let X be a Banach space without w-normal structure.” Then for

any 0 < e < 1, there exists a sequence {z,} = S(X) with z,*0 and
’ 1—g < |2y0;—2]| <1+4¢,

for suffi czently large n, and any zeco{zk}k 1.

LEMMA 2.3. Let X be a Banach space without w-normal structure. Then for
any 0 <e <1, there exist x;, x,, x5 in S(X) satisfying

(1) x,—x3 =ax, with la—1| <e;

(i) LIy =5l = 1], [llxg —=(=x )| — 1} <&; and

(@) 3 lxy +x,l, Flxs +(=x)] > 1—e. |

The geometric meaning of the lemma can be succinctly described as: if
X does not have w-normal structure, then there exists an inscribed hexagon in

~ S(X) with length of each side arbitrarily close to 1 (by (i) and (ii)), and with at
least four sides whose distances to S(X) are arbitrarily small (by (iii)).

Proof Let n = ¢/4 and let {z,} be chosen as in Lemma 2.2 with & replaced
by n. We claim that. for large n,

@1 1—y < l|lz,—z,/2] < 1+7.
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In fact, since z,* 0, 0 is in the weak closed convex hull of {z,}, which equals
the norm closed convex hull ¢6{z,} ¢, and there exists n, and yeco {zJns
with |ly| <#. We may assume n, also satisfies -

1- 11/2 < |z, —zll <1+n/2,

for n = ny and zeco{z,}3% as in Lemma 2.2. The claim follows by observing
that for n = n,, ' » |

lzu=21/20 = llz,—(+20)/20 = /2] > L—n/2)—n/2 = 1—.’7;
iz, —21/2ll < lza=@+z0/2 +1y/21l < L +n0/2)+n/2 = L+1.

© Let f1 be the supportlng functional of z, € S(X), i.e. ||f1 | = {f1, zl> = 1.
Since z, ~»(, we can assume, in conjunctlon w1th (2.1), that Zno satisfies

|<f1, Zno>| < 71’ 1 7’ < “Zno Zl”& ” no 1/2” < 1+77

Let w = (z; — 2,,,)/||2; — 2y, |- Then w, z, and z,, will play the role of Xy, X, and
X, respectlvely condition (i) is satisfied by the definition of w; for (ii) we need
only observe that

. . 1 |
Ilzl~wll = (1= llzy —zZuo I} W — 24| < (11— lzg = zuoll [+ 1 Zno )
| | h lzy —zal =~ A
oo+l
<——<1+4n=1
ST +4n +é,
llzy —w] ! {2yl — I ~ || HI) ">1 —4n =1
Zy—Wj| =2 z,,0 Zy—Zy, — =1—e.
v 121 =z | ! 1+7

Hence | |z, —w| — 1] < &. Slmllarly we have | [w+z,,|| — 1] < &. Finally to proi(e .
(iii), we observe that -

Cwtzl > <f1,w+z1>=1+<’f1,w>
<f1a Z1> <f192n0 >1+1_—_—_17_>2_4n

121 —2n, |l I+7
Nw =Wl = l12so— (21— Zag)l = (21— Zn) = W] > 2||Zm,-21/2|l-71>2 41.

Let o(7) = sup{(llx+y| + |x—ty| —2)/2: x,yeS(X)} be the modulus of
smoothness of X. As a snnple consequence of Lemma 2.3 we have

COROLLARY 24 (Baillon, Turett [27]) If X is a Banach space wzth-{
lim,, Q(’L‘)/’L' < 1/2, then X has w-normal structure. B :

‘ Proof Suppose X d_oes not have w-normal structure. For 7 > 0, let & = 72
‘and choose x,, x,, X in S(X) satisfying the conditions in Lemma 2.3. Let
x=xy, y=X,—x;)/IIx,—x,|l. Then for 0 <t <1, |x+7y| >1—2¢ (by
Lemmas 2.1 and 2.3(iii)), and . , L
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(%, —X,)

e, =%, |

T(xz Xq)—

”x'fTJ’”l 2 [lxy —t(x—x )l =

= 11 +7) %y —t(ax; +xa)ll =] flx, — x| —1]

> (1 +7) % — (x5 +X)|| — |1 —a| — e

- .
= (1+1) E—x3 T —( }x_l) —2¢t
> (147)(1—2¢)—2er.

- Hence

—4e—4 1
Q(‘L‘) T—4e—4et Lot

T 2t 2
We have lim,, Q(T)/’L' 1/2, which contradlcts the assumption on Q

§3. The U-spaces. We begin by giving a useful equivalent criterion for
U-spaces. For 0 <6 <r <1, xeX, we use N,(x, ) = BXX)\B(—rx, 1+r—)
to denote the lune determined by the two balls. _

THEOREM 3.1. Let X be a Banach space. Then X is a U-space if and only if
for any £ >0, 1 > r > 0, there exists r > § > 0 such that foi any xeS(X), and -

for any y1,y,,2€N,(x, 6),
6y Kfyi=ydl <e, for all feV,

Proof. The necessity is given in [16, Lemma 3.1]. To prove the sufficiency,
fore>0,1>r>0,1let 0 <d <r be chosen to satisfy (3.1). For any x, yeS(X)
with || x+y)/2|| >1—0/2, we have

ly+rxl = x4+ y)—(1=r)xl = |x+yl—(1—7)
>2—=8)—1—r)=14+r—34. . |
~This implies that y¢ B(—rx, 1+7—5), and hence yeN,(x, §). Now for any

 feV,, (3.1) implies |[{f, x—y)| = 1—(f, y> <&, and therefore {f, y> > 1 —¢
for all feV,.. X is then a U-space.

THEOREM 3.2. Suppose X is a U-space. Then X has normal structure.

Proof For 1/3>&>0, 1>r>0, let § be defined as in (3.1), and let
¢ = min{e, 6/(2(1+7))}. Note that X is reflexive (Theorem 1.2(i). Suppose -
X does not have normal structure; then it does not have w-normal structure
either. There ex1st X1,X5, X5 €S(X) satisfying the conditions in Lemma 2.3 with
respect to ¢. We claim that x,, —x;¢B(—rx,, 1+r—0). In fact, let

= (X, +rxy)/(1+7). Then ye[x;; x,], and by Lemma 2.1, '

Ixa+rxgll =+ Iyl = (1 +1)(1-28) > 1+r-5.
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The same argument holds for —x,. Let feV,,. Then by (3.1), we have
- 2=2, %10 < [KSs x1 =X [+ IS, X = (=% + IS, x5 —x3))
< e+e+||x,— x5l

But by Lemma 2.3(i), ||x*2—x.3” < 146, which implies that 2 < 14 3¢ and
hence a contradiction.

To show that the above X actually has uniform normal structure, we need
a more sophisticated argument. We will establish another equivalent condition
of U-space which will be used in the following section.

For any xeS(X), V, i1s a w*-compact convex subset of X*, and for any
smooth point x of S(X) V. is a singleton. Let K < X* be a bounded closed
subset. Then feK is called a w*-strongly exposed point if there exists x € S(X)
such that for any & > 0, there exists § > 0 satisfying

VgeK, (f,x)<<g, x>+6 = |g—f| <e.

A Banach space X is called an Asplund space if every continuous convex
function on X is Fréchet differentiable on a dense G, subset. It is well known
that X is an Asplund space if and only if every w¥-compact convex subset K in
X* is the w*-closed convex hull of its w*-strongly exposed points [1, 10, 19].
Also in this case, every sequence in K has a w*-convergent subsequence [26].

LeEMMA 3.3. Let X be an Asplund space, x e S(X), and let f be a w*-strongly
exposed pomt of V,. Then there exist sequences {x,} < S(X), {f,} = S(X*) with

A fi= », f, where the x,’s are Fréchet differentiable points of S(X), and
f eV is the (unique) supporting functional of S(X) at x,.

In order to prove the above lemma, we will need the following three results.
LeEMMA 3.4. Let X be a Banach space, let {x } x be in S(X), and let
Suppose X, L 5 and 1 —>f Then fe V..

Proof. This follows from

1> Kf, x)l = Hm [<fy, %>+ =200 = 1= lim [x—x,] = 1.

LEmMMA 3.5 [9, p. 22]. Let X be a Banach space For any x, yeS(X) et
u—(x+/1y)/!|x+/1y|| with A>0. Then for f. eV, f eV :
oo W0 < (Ix+ 491 =1/ < <y, y>

LEMMA 3.6. Let X be a two-dimensional Banach space, and let f,g€V,, and
zeS(X) such that —a =g, z> < {f,z) =0. Let A = {yeS(X): <g, > < (f w}
“denote the half sphere. Suppose {y,} < A with yn~l>x and suppose
{f,} € S(X*) satisfies
(32) oo Yap 2 1=hallx—y,ll,  for every n.

Then {f,,z) =2 0 for large n.
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Proof. Note that x,zed, and y,= (x+41,2)/|lx+2,z|l, 4,>0. Since
ly,—x||=0, it is clear that 4,—0 as n—o5. By Lemma 3.5,
liminf<{g, x—y,>/4, = 11m1nf[(||x+/1 z|—-1)+4,0)/A, = {f, z)+a =a,

hence there exists N, L such that for n> N 1>
B3) <4y =1-4g, x=y) <1-2,0/2 <1—}alx—y,lI.

Let u, be the support point of f,. We claim that u, e A. Suppose this is false. By
passing to a subsequence, we can assume that {u,} is contained in the
complementary half sphere A= S(X)\A. The hypothesis implies that
{fu» x> —1, so that no subsequence of {u,} converges to — x; hence there exists
N, and 6 > 0 such that if N > N, then |ju,—(—x)|| > J. Also there exists N,
such that for n > Nj, |ly,—x|| < 6. For n > N = max{N,, N,, N5}, x can be
represented as

Ut A,

= , A =>0.
|lu, + 2,3,

Apply Lemma 3.5 again: we have {f,, y,> < {g, y,>. This is impossible in view
of (3.2) and (3.3), and the claim is proved. R

Now for n> N, u, €A, either u, = (x+4,2)/||x+4, z|| or u, =(—x+4,2)
MN—=x+24,zll, 4,=0. In the first case, Lemma 3.5 implies that {f,z)
= {f, z) = 0. In the second case, take —f as a support functional at —x. Then
Lemma 3.5 again implies that {f,, z) > {—f, z) = 0. This proves the lemma.

Proof of Lemma 3.3. If V, is a singleton, the assertion is clear. Assume V,
contains more than one point, and let f be a w*-strongly exposed point of V.
Then there exists a ze S(X) such that

(34) - {g,zy <<{f,zy, for all geV\{f}.

Without loss of generallty, assume {f, z) = 0. Let X, be the two- dlmensmnal
‘subspace spanned by x and z. Let

= {yeS(Xy,): <g, y> <<f, y> for all geV\{f}}.

Then A’ is a half sphere. Suppose {y,} < A’ with y, — By Let {7} < S(X) be
the Fréchet differentiable points such that ||y, —j,l| < [[x—y,ll/n, and let £, be
the unique supporting functional of S(X) at y,. We claim that {f,, z) > 0 for

large n. In fact, let # be small enough such that K = EEW*(V,C\B( f.n) # 0.
Since f'is a w*-strongly exposed point of V,, f¢ K. By the w*-compactness of K,
we can find a g, € K such that :

—o = {gy, zy = sup{{yg, z): .geK} < 0.
Le’; ,
= {J’ES(XZ): g1, ¥ <<, J’>}
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It. is obvious that 4" = A", Tt follows from the choice of f, that
L2 (s Y2 = LS T =S Pu= 2> 2 L=117s=ull > 1 =2allx =y,

for large n, and since y, — LN = x, {f,, xy—1. Let f, be the normalization of the
restriction of f, on X,. Then from the above {f,, y,> > 1—%a|lx—y,||. Use
Lemma 3.6: we have <{f,, z) >0, and so {f,, z) = 0.

Note that since X is an Asplund space, there exists a w*-convergent
subsequence of {f,} which converges weak* to some he X* [26]. Without loss
of generality, let {f,} itself be this subsequence, ie. f, %, h. Then heV, (by
Lemma 3.4) and ¢k, z> = 0 (by the above proof); (3.4) hence implies that h =f.

Our goal is to obtain the following equivalence statement for U-spaces.
THEOREM 3.7. Let X be a Banach space. Then the followmg are equwalent

() X is a U-space;
(i) There exists a function ¢: S(X)— S(X*) such that cp(x)e V. and (1.1) is
satisfied for f = @(x) (instead of V feV);
(iti) There exists a dense Gz subset D = S(X) and a function ¢: D— S(X*)
such that o(x)eV, and (1.1) is satisfied for xeD and [ = @(x).

Proof. It is clear that (i) implies (i), and (ii) implies (iii). To prove (iii)
implies (i), we first claim that X is uniformly nonsquare. Indeed, for 0 < ¢ < 1,
let § be chosen to satisfy the conditions in (iii). If X is not uniformly nonsquare,
- then for the above 6, there exist x, ye D such that 4||x+y|l, 3lx—y|| > 1-4.
Hence by (1.1), {¢,, y) and {¢,, —y) > 1 —¢; this is impossible. It follows that
- X is reflexive, the set of Fréchet differentiable points F of S(X) is a dense G, set,

and the w*-strongly exposed points of bounded closed convex sets K in X*
coincide with the strongly exposed points of K. Without loss of generality, we
assume D = F and hence {¢(x)} =V, for xeD. _

- Now for any ¢>0, let 6, >0 such that for any xeD, yeS(X) with
lx+)2ll > 1-6,, <o, y> > 1-—8/2. Let ¢ = min{él/Z, ¢/2}. Then for any
xeS8(X), and for any strongly exposed point feV,, Lemma 3.3 implies that
there exists a sequence of Fréchiet differentiable pomts {x,} € D such that
X, Lix and ¢, —% f. Suppose ye §(X) and ||(x+y)/2l] > 1 —5. Take N such
that 1%y }xH <0 and Ko, —f, y>| <. Then '

Gew + Y)/211 > 116+ 3)/20 =iy — )20 > (1—8)—8/2 > 1—4y,
and hence S N
o9 =Py W= 00 YD > 1—2—8 > 1—5.

Note that V_is the closed convex hull of its strongly exposed pomt f, hence we
have {f, y> > 1—¢ for all f eV, and (i) follows.

§ 4. Ultraproducts and uniform normal structure of U-spaces. Let & be
a filter on an index set I, and let {x;};;; be a subset in a Hausdorff topological
space X. Then {x,}, is said to converge to x with respect to &, denoted by




 Uniform normal structure 49

limg x; = x, if for each neighborhood U of x, {ieI: x,e U}e #. A filter % on
I is called an ultrdfilter if it is maximal with respect to the ordering of set
inclusion. An ultrafilter is called trivial if it is of the form {A4: 4 < I, iye A} for
some i, e I. We will use the fact that if % is an ultrafilter, then (1) forany A <=1,
either Ae or I\NAe¥; (ii) if {x;}; has a cluster point x, then limg x; exists

and equals x. ,
Let {X};; be a family of Banach spaces and let I (I, X,) denote the
subspace of the product space equipped with the norm [|(x;)|| = sup;e|Ix;|| < co.

DEerFiNITION 4.1 [7, 24]. Let % be an ultrafilter on I and let
Ng ={(x)el (I, X): lim, ||x;|| = 0}.

The ultraproduct of {X ;};.r is the quotlent space [ (I, X;)/N, equipped with the
quotient norm.

We will use (x;), to denote the element of the ultraproduct. It follows from
property (ii) above and the definition of quotient norm that

@41 x|l = limyg |lx .

In the following we will restrict our index set I to be N, the set of natural
numbers, and let X; = X, ieN, for some Banach space X. For an ultrafilter
% on N, we use X, to denote the ultraproduct. Note that if % is nontrivial,
then X can be embedded into X, isometrically. :

LEMMA 4.2 [24]. Suppose U is an ultrafilter on N and X is a Banach spdce'

 Then (X*)y = (Xg)* if and only if X is superreflexive; and in thzs case, the

mapping J defined by
I ((fa)s Cedary =limg (fiy x5, for all (x)g€ X,
is the canonical isometric isomorphism from (X*), onto (X,)*.

!
THEOREM 4.3. Suppose X is a U-space. Then for any ultrafilter % on N, X, is
also a U-space.

Proof. Since a U-space is uniformly nonsquare, it is hence superreflexive
[8], and by Lemma 4.2, (X,)* = (X*),. For any ¢ >0, let 6 be as in the
definition of U-space, i.e.

42) Vx,yeSX), [[x+y/2>1-0 = {f,y>>1—e, Vf. V.

Let (%,)q, (v)q €S(X,) and ((x)a + ()a)/2|| > 1— 6. Without loss of generality
we may assume ||x;|| = |ly;]| = 1 for all ieN. Then from (4.1), I = {i: ||(x;+y))/2l]
>1—0}e, and I # . For each ieN, take an f,_ eV, . Since {(f)y> (X)z)
= lim,, oo X0 = 1, (fe)a € Vi(xipe From (4.2), we have <fxl, y;) > 1—¢, for all
i€ 1,50 {(fudys (P = lima{frr > > 1—&. By letting ¢: S(Xg) > S((Xa)*),
defined by qo((xi)%) = (feJu> (X)a €S(Xy), Theorem 3.7(ii) implies that X, is
a U-space. .

4 - Studia Mathematica 99.1
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"THEOREM 4.4. If X is a U-space, then X has uniform normal structure.

- Pro of. Suppose X does not have uniform normal structure. We can find
a sequence {C,} of bounded closed convex subsets of X such that for each n,

(4.3) . ~ 0eC,, diamC,=1,
44) rad C, = inf sup ||x— yH > I—I/n
. . xeCyp yeCp

Let % be any nontrivial ultrafilter on N, and let
| C = {(x,)g: x 2€C> neN}.

Then C is a nonempty bounded closed convex subset of X4 It follows from
- (4.1), (4.3) and (4.4) that diam C = radC = 1, so X, does not have normal
structure. On the other hand, from Theorem 4.3, X,,” is a U-space. This
contradicts Theorem 3.2, and X must have uniform normal structure. '

Theorems 1.2(ii) and 4.4 yield

COROLLARY 4.5. Both uniformly convex spaces and uniformly Smooth spaces
have uniform normal structure.

§5. J(X) and uniform normal structure. It was proved in [12] that if X is
a two-dimensional Banach space whose unit sphere is defined by a right
hexagon, then J(X) = 3/2. Hexagon plays an important role in normal
~structure as shown in Lemma 2.3. In the following we W111 pursue this
connection further. '

LeMmma 5.1, Let X be a Banach space, and let 0 < ¢ < 1. Suppose there'exist '
X1, X and x5 in S(X) satisfying the conditions in Lemma 2.3. Then
J(X) > 3/2—4e. : :

Proof. Let y = 3(x,+x3). Then
Iy —x1)— x50 = ll(x; —x3)/2— x| = 1 — a/2
and 1—a/2 is bounded by %(1+e).

X2

X

Fig. 1

- Let w=A(y—x,) be on the line segment [—x; x;]. A comparlson of
similar triangles ylelds

Iy—xg)—wll _ 1—a/2
Iwl T
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It follows that (1 —A4)/A = 1—a/2 and hence 1/4 > 3/2—c¢. Also hypothesis (iii) -
of Lemma 2.3 and Lemma 2.1 imply ||w|| > 1—2¢, and therefore we have

1 3
ly=xll = Flwll > 5—4e.

Similarly |ly+x,]| > 3/2—4e. If we let y' = y/|lylle S(X), it is clear that

W AExd E lyExdl Y =x = =)
(forif z,, z, are the intersections of a straight line and the unit sphere S(X), and
if z(t) = z,+(z,—2z,)t, t = 0, is one of the half lines outside the sphere, then
llz(®)|l is an increasing function of ¢). This implies J(X) > 3/2—4e.

We now proceed as in §4 to obtain the uniform normal structure for
J(X) < 3/2. We first prove a result for ultraproduct.

THEOREM 5.2. For any Banach space X, and for any nontrivial ultrafilter U on
N, J(X,) = J(X).

Proof. For any &3>0, choose x,y so that |x|,|ly]] <1 and
[lx+yll = J(X)—e. Let x; = x, y; =y for ieN. Then ||(x)yll, I(})4]] <1 and
1(x.)y, £ (7)o )] = J(X)—e. This implies that J(X,) = J(X)—e¢ for any &> 0.

To prove the reverse inequality, we can choose | ‘

105all, 10Dl < 1, 16)e £ Gl > T (Xg)—e. |
From property (i) of ultrafilters (§4), and by (4.1), we know that the subsets
{ieN: |Ix;]| < 1}, {ieN: ||y;]l < 1} and {ieN: ||x;+y;|]| > J(X,)—¢} are all in
9. Hence their intersection M 1s nonvoid. Let ieM. Then

1% = yall A llx; + pill > T (Xg)—e.
This implies that J(X) > J(X,)—e for any ¢ > 0.

THEOREM 5.3. Let X be a Banach space with J(X) < 3/2. Then X has uniform
normal structure.

Proof. Note that J(X) < 2 if and only if X is uniformly nonsquare [12].
Now since J(X) < 3/2, X is reflexive [15]. Lemmas 5.1 and 2.3 imply that
X has w-normal structure, and hence normal structure. By using the same
proof as for Theorem 4.4 and making use of Theorem 5.2, we conclude that
X has uniform normal structure.

Let d(e) be the modulus of convexity of X. The relationship of J(X) and J(¢)
is as follows: v

THEOREM 5.4. Let X be a Banach space. Then J(X) = sup{e: d(e) < 1fa/2}_; “

Proof. Let ¢, = sup{e: () < 1—¢/2}. We first show that J(X) < g,. Since
J(X) <2 [12, Theorem 2.5], the inequality is obvious if ¢, equals 2. We can
hence assume that &, < 2. For any ¢ > g;, and for any x, y in S(X), either
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o Hx— y|| & or |[x—y|| > &. The latter case implies, by the definition of &g and
the choice of ¢, that d(¢) > 1—¢/2. It follows that

L — i+ )2l > 1~~8/2
1e. Hx+ y|| <e&. We have in either case
e lIx +yll Allx = yll'< e

This irn»plies J(X) < e, and since ¢ > g, is arbitrary, J(X) < €o-
To prove the reverse inequality, we let 0 < < gy/3, and let & = g;—7.
There exist x, y in S(X) such that |[x—y|| > ¢ and -

L=]l(x+y)/2ll < 6(e)+1,
i‘.e. x4+ y|l > 2—2d(e)—2n. This implies that
J(X) Z lIx+yll Al =yl > min{2(1—4(e)—n), ¢} = min{e—2n, e} = gy—3n.
Since # > 0 is arbitrary, J(X) > ¢,, and the proof is complete.
- .CorOLLARY 5.5. Let X be a Banach space (dim X > 2). Then
@) J(X) > /2; and
(1) for 0<e<2, () >1—¢/2 if and only if J(X) <c¢

Proof. (i) follows directly from Theorem 5.4 and a result of Nordlander
- [20]: for any Banach space X  with dimX >2, and for 0<e<2,
o(e) < 1—(1—¢?/4)!/?. (i) is an easy consequence of Theorem 5.4. '

‘As-a direct corollary of Theorem 5.3 and Corollary 5.5(ii), we have

COROLLARY 5.6. Let X be a Banach space with 6(3/2) > 1/4. Then X has
uniform normal structure.

-COROLLARY 5.7. Let X be a Banach space and suppose there exists -
0 < &< 3/2 such that 6(c) > &e. Then X has uniform normal structure. -

Proof. If X does not have uniform normal structure, then 6(3/2) < 1/4. It
is known that 8(e)/e is an increasing function for 0 < & < 2 [18]. We have
o(e)fe < 6(3/2)/(3/2) < 1/6 for all 0 < & < 3/2. This contradicts the assumption.

§ 6. Isomorphism and J(X). Let X be a given Banach space and let Z be the
class of Banach spaces isomorphic to X. Let 4 be the semimetric on & defined
by ’

’ A(Y, Zy = inf{In||T|{- | T~ Y|: T: Y27 is an isomorphism}.
Let X, Y be Banach spaces and let T: X — Y be an isomorphism. In [12] we
proved that
J(X)+2

60 TIITT) T < G ST
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THEOREM 6.1. If J(Y) < 3/2, and if

7
A(X, Y) < lnm—),

then X has uniform normal structure.
| Proof By (6. 1) | _
o J(X) (epr(X Y)) (J (Y)+2) 2<7/2 2= 3/2
'Hence Theorem 5.3 1mphes that X has umform normal structure
In this section we wﬂ}lv improve (6.1) w;th Y=1, or L,

 LEMMA 6.2 [3,23]. Let X bea t_Wo-dimeﬁSional Bana_ch space, and let K, K,
be closed convex subsets of X with nonvoid interiors. If K, € K,," then
r(K,) <r(K,), where r(K) denotes the length of the czrcumference of K;,

- LEMMA 6 3. Let X be a Banach space, and let u, ve X. Then for any'a, b>1,
- oll+ lle — o] < llaws+ bl + [lau—boll.

Proof. We can assume that a > b > 1. Then the triangle with vertices
bu, bv and —bv is contained in the triangle with vertices au, bv and —bv 50
from Lemma 6.2, we have :

s+ o] + [ju—v)|| < ||bu+ bol||+ ||bu—by|| < ||au+bv||+||au bu||.
" THEOREM 6.4. For any isomorphism T from X to 1, 1<p<oo,
JX) < |\TNIT ™ |max {217, 219}, where 1/p+1/g=1.

Proof. Suppose p = 2. By applying the method of Lagrange multlpllers to
the function F(s, t) = s+t subject to the constraint s?+t? < 27 for s,t >0,
F(s, t) assumes its maximum value 2-2'4 at the point s =t = 24 where
1/p+1/q = 1. For p = 2, the Clarkson inequality [6] implies

e+ ylP+x—ylP <27, ¥, yeS(,).

For x, yeS(l,), let u= Tx/|Tx|l, v=Ty/ITyll, a=IT"*||-ITx|l, and b=
IT~||-||Ty|l. Then a, b > 1, and by Lemma 6.3, we have

2(||u+v||/\llu vlf) <+ oll + |lu—oll < [law+ bol| + |lau—bof| -
—IIT || Tx+ Tyll+ 1T ITx—Tyll
HT HEITHAPe+ i+l — yll) =1y IITII 2 24,

Since the above u, v cover all the elements of S(X ) as T is an 1somorph1sm we
have J(X) < ||T|l-IT~1||-2". |
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For 1 < p <2 the Clarkson iheqﬁality [6] becomes
x+ylIP+HlIx—ylIP < 2%, Vx, yeS(,).
- By the same proof, we have
e+ ofl + [l —oll < NTPNT 42020 Y = 20| T) - 1T |- 2Y9),
and hence the same conclusion holds. |

COROLLARY 6.5. For 1 <p < oo, I/p+1/q=1, if A(X, 1)< min(1/p, 1/q)
xIn2, then X is uniformly nonsquare.

Proof. Recall that X is uniformly nonsquare if and only if J (X) <212,
Theorem 3.4]. It follows from Theorem 6.4 that

- J(X) < (expA(X, ))max {2'7, 2114} < min {2, 21/‘1}-max{21/p, 2t} =2,
Thus J(X) is uniformly nonsquare.

THEOREM 6.6. For 1 < p < oo, Theorem 6.4 and Corollary 6.5 also hold if |,
is- replaced by L,.

§7. Some remarks and open questions. Let K be a bounded closed convex
subset of X, and let D(K) = sup{|lx—yll: x, ye K} be the diameter of K. For
each xeK, let r(x, K)=sup{|lx—yl: yeK} and let R(K) = inf{r(x, K):
xeK} the Chebyshev radius of K [14, p. 178]. In [5], Bynum introduced the
following normal structure coefficient of X:

N(X) = inf{D(K)/R(K): K bounded closed convex subset of X}.

He showed that if X, Y are isomorphic, then N(Y) < (exp 4(X, Y))N(X). It is
known that N(L,) = N(l,) = min{2'/#, 21/} [21]. It will be interesting to know
any direct connection of J(X) and N(X), for any Banach space X.

" It is known that uniformly nonsquare does not imply normal structure, ¢.g.
let, X =(l,, ||-]) where |[-|| is an equivalent norm of [, defined by

llxll = max {|lx*l,, [lx7[l,}
[4, 25]. Hence there ex1sts X such that J(X) < 2 and X does not have normal
structure.

QuestioN 7.1. Is J(X) < 3/2 a sharp condition for (uniform) normal
structure? In other words, is 3/2 the largest such constant?

Note that the above example still has the fixed point property by a result of
Lin [17]. We pose a more restricted form of the well known open problem
concerning reflexive spaces, or superreflexive spaces. ‘

QUESTION 7.2. Does J(X) <2 (equivalently, X is uniformly nonsquare)
imply the fixed point property? :
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In all the classical spaces, e.g. [,, L, spaces, we have J(X)=J(X*).
" Recently, Prus has given an example of a Banach space X such that J(X)
# J(X*). We ask

QUESTION 7.3. What is the relation of J(X) and J(X*)? What is the dual
parameter corresponding to J(X)?
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